Incorporating Multiple Attributes in Social Networks to Enhance the Collaborative Filtering Recommendation Algorithm
نویسنده
چکیده
In view of the existing user similarity calculation principle of recommendation algorithm is single, and recommender system accuracy is not well, we propose a novel social multi-attribute collaborative filtering algorithm (SoMu). We first define the user attraction similarity by users’ historical rated behaviors using graph theory, and secondly, define the user interaction similarity by users’ social friendship which is based on the social relationship of being followed and following. Then, we combine the user attraction similarity and the user interaction similarity to obtain a multi-attribute comprehensive user similarity model. Finally, realize personalized recommendation according to the comprehensive similarity model. Experimental results on Douban and MovieLens show that the proposed algorithm successfully incorporates multiple attributes in social networks to recommendation algorithm, and improves the accuracy of recommender system with the improved comprehensive similarity computing model. Keywords—Recommender System; Social Networks; Collaborative Filtering; Comprehensive Similarity
منابع مشابه
A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملIncorporating Interest Preference and Social Proximity into Collaborative Filtering for Folk Recommendation
In many social communities, it is increasingly popular for people to seek useful information or resources from reliable peers (i.e., folks). In this regard, folk recommendation is no less important than other types of recommendation such as book recommendation, movie advertisement, etc. In this paper, we focus on incorporating user similarity (in terms of interest similarity and social proximit...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملUsing social network information to enhance collaborative filtering performance
When people make decisions, they usually rely on recommendations from friends and acquaintances. Although collaborative filtering (CF), the most popular recommendation technique, utilizes similar neighbors to generate recommendations, it does not distinguish friends in a neighborhood from strangers who have similar tastes. Because social networking Web sites nowmake it easy to gather social net...
متن کامل